
Establishing Workflow Trust Using Provenance
Information

Shrija Rajbhandari, Arnaud Contes, Omer F.Rana, Vikas Deora, and Ian
Wootten

School of Computer Science, Cardiff University,
Queen’s Buildings, 5 The Parade, Cardiff CF24 3AA, UK

Abstract. Workflow forms a key part of many existing Service Ori-
ented applications, involving the integration of services that may be made
available at distributed sites. It is possible to distinguish between an “ab-
stract” workflow description outlining which services must be involved
in a workflow execution and a “physical” workflow description outlining
the instances of services that were used in a particular enactment. Prove-
nance information provides a useful way to capture the physical workflow
description automatically - especially if this information is captured in
a standard format. Subsequent analysis on this provenance information
may be used to evaluate whether the abstract workflow description has
been adhered to, and to enable a user executing a workflow-based appli-
cation to establish “trust” in the outcome.
An analysis tool that makes use of provenance information to assist in
evaluating trust in the outcome of a workflow execution is presented.
The analysis tool makes use of a rule-based engine, supporting a range of
queries on the recorded information by one or more workflow enactors.
The results of the analysis tool on a particular workflow scenario are
presented, along with an experiment demonstrating how the analysis tool
would scale as the granularity of the recorded provenance information
was increased.

1 Introduction

Computational scientists in recent years have been increasingly relying on dis-
tributed computing technologies as an essential part of their everyday research.
Although the concept of sharing distributed resources amongst geographically
distributed groups is not new, increasing advancement in Service Oriented Ar-
chitectures (SOA) in Grid and Web Services makes the vision more realistic.
Amongst the consequences of the progress toward SOA in scientific domain is
an increased emphasis on provenance data, and the need for mechanisms to ac-
quire, use and manage such data. Workflow forms a key part of many existing
Service Oriented applications, to integrate services that may be made available
at distributed sites. It is possible to distinguish between an“abstract” workflow
description outlining which services must be involved in a workflow execu-
tion and a “physical” workflow description outlining the particular instances of

services that were used in a particular enactment. Provenance information pro-
vides a useful way to capture the physical workflow description automatically
especially if this information is captured in a standard format [1]. Subsequent
analysis on this provenance information may be used to evaluate whether the
abstract workflow description has been adhered to, and to enable a user exe-
cuting a workflow-based application to establish “trust” in the outcome of the
physical workflow.

Our work aims to assess the “trust” that a user can place in the result that
has been produced as an outcome of a workflow execution. Trust in this context
is defined as the ability of a service to perform as advertised. Such assessment
can be particularly useful if a user wishes to automatically compose a workflow
in the future, or determine which sets of services could be successfully combined.
Consequently, trust assessment can only be achieved effectively after a service
has been provisioned – as it is then possible to compare the advertised service
description with what was actually provided. We envision the development of
an autonomic workflow enactment engine that can automatically chose between
a set of discovered services, and combine them to produce an application. The
approach presented here therefore adds to the existing literature on providing
semantic annotations to services to enable their composition.

Providing provenance information along with the result (as an outcome of a
workflow) improves a user’s ability to judge the validity of the result. Although
provenance provides justification for the result, the notion of how much trust can
be placed in the result is completely implicit – to the extent that such concern has
not been fully addressed in existing workflow systems. This paper introduces an
analysis tool that makes use of provenance to assist in the “trust assessment” of
the result that has been produced through a distributed workflow session. The
analysis tool makes use of a rule-based engine, supporting a range of queries
on the recorded provenance information by one or more workflow enactors. The
analysis tool provides information that is consumed to elicit/attain some measure
of “result trustworthiness”.

Related work on trust models is presented in section 2. Section 3 presents our
workflow trust architecture. Section 4 provides the rule-based analysis tool that
is the basis for our trust architecture, and section 5 provides an evaluation of our
model with the workflow scenario from the BioDiversityWorld(BDW) project [2].

2 Related Work

Significant literature exists for calculating “trust” based on the reputation or
Quality of Service (QoS) of actors [3–6]. Such approaches achieve trust evalua-
tion in two parts. First, to allow actors to trust each other there is a need to
endow them with the ability to reason about the reliability, or honesty of their
counterparts. This ability is captured through trust models. Second, to enable
actors to calculate the degree of trust they can place in their interaction part-
ners. A high degree of trust in an actor would mean it is likely to be chosen as
an interaction partner. Hence, trust models aim to guide an agent in deciding

how, when, and who to interact with. However, in order to do so, trust models
initially require actors to gather some knowledge about the characteristics of
their counterparts. Based on existing work, this may be achieved as follows:

1. A presumption drawn from the actor’s own experience: Trust is
computed as a rating of the level of performance of the actor. The actor’s
performance is assessed over multiple interactions checking how good and
consistent it is at doing what it says it does. To this end, Witkowski et
al. [7] propose a model whereby the trust in an actor is calculated based on
its performance in past interactions. Similarly, Sabater et al. [4] propose a
similar model but do not just limit the overall performance to the actor’s
direct perception, but they also evaluate its behavior with other actors in
the system.

2. Information gathered from other actors: Trust in this approach is
drawn indirectly from recommendations provided by others. As the recom-
mendations could be unreliable, the actor must be able to reason about the
recommendations gathered from the other actors. The latter is achieved in
different ways: (1) deploying rules to enable the actors to decide which other
actors’ recommendation they trust more [8]; (2) weighting the recommen-
dation by the trust the actor has in the recommender—EigenTrust [3] and
PageRank [9] are examples of this approach.

3. Socio-Cognitive Trust: Trust here is drawn by characterizing the known
motivations of the other actors. This involves forming coherent beliefs about
different characteristics of these actors and reasoning about these beliefs in
order to decide how much trust should be put in them [10]. Deriving such
motivations in a real world system is a non-trivial task, and this level of
trust is therefore often difficult to compute in practice.

Refer to [11] for more details on trust and reputation approaches. The aim of
such existing work is to help in the automatic selection of a trustworthy actor
based on the evaluated trust for each actor. Other approaches, such as [12–14],
involve trust assessment for service composition. The primary objective within
these approaches is to: (1) select trustworthy services to achieve a particular
activity; (2) compute optimal execution plans for a workflow. Our framework
differs from such models as the concern is towards trustworthiness of an outcome
that is the result of a scientific experiment—performed in a distributed, service
oriented environment. To achieve this we recognize the importance of provenance
data and exploit this in our trust architecture. Thus, apart from provenance data
providing the explanation about how a result has been produced, it also provides
a way to formulate the trustworthiness that one can place in the result. A trust
assessment framework consisting of an analysis tool that makes use of provenance
information to assist in evaluating trust in the outcome of a workflow execution
is presented.

Automatically inferring such trust using provenance information leads to
workflow systems that can adapt service selection and provisioning over time.
For instance, consider a scenario where an abstract workflow has been developed

by a user describing the types of services they wish to compose. Each service in
this instance is a place holder (proxy), that is resolved to a given service instance
during the enactment process. Trust metrics therefore enable the enactment
engine to dynamically bind a proxy to a more trustworthy instance of a service
(if multiple instances can be found), thereby leading to “autonomic” workflow
enactment mechanisms.

3 Workflow Trust Architecture

The trust architecture in figure 1 consists of two main parts: (1) a trust calcu-
lator; and (2) an analysis tool. “Trust assessment” via the trust calculator is
achieved by performing rule-based analysis on provenance data that has been
recorded about a workflow. The necessary provenance data describing the “phys-
ical” workflow that has been enacted is encoded in a standard XML schema and
recorded within a Provenance Store [1].

Fig. 1. Trust Architecture

Provenance information utilized for trust evaluation may be categorized as fol-
lows: (1) Process Provenance: corresponds to the steps involved in the workflow
that lead to a result. It also includes the inputs and outputs for each service
involved in the process; (2) Actor State Provenance: records the state of the ac-
tors/services involved in a particular workflow instance. This also includes static
data such as ownership and identity information associated with an actor.

3.1 Trust Calculator

The trust calculator allows users to pose queries to the Provenance Store for
retrieving provenance information associated with previous workflow executions.
A user may query data for each stage of the workflow. The trust calculator
adopts a decision process for analyzing the queried provenance. The conceptual
decision process is presented in [15], where a decision tree model has been used
to generate trust measure for a workflow result. Each node within the decision
tree corresponds to a question which triggers an analysis on previously recorded

data associated with the workflow. The response to a question is a Boolean value
– for example, a result from checking for “no-conflict” on data passed between
two services in the workflow can be either (1) “True” (positive) if there is no
conflict or (2) “False”(negative) if a conflict exists. In [15], the questions are
processed only through user intervention. However, our current work involves
mapping the questions in the decision tree to rules in the analysis tool, so that
the answer to a particular question can be evaluated automatically. The analysis
tool is discussed in section 4 with some example rules to illustrate the concepts.

We adopt a beta probability distribution for combining analysis results and
for expressing trust measures. This distribution is useful for modelling random
probabilities and proportions, particularly in the context of Bayesian analysis. In
particular, the Bayesian theory uses standard beta distributions to model poste-
rior probability estimates of observed binary events with two possible outcomes.
The mathematical analysis that leads to the posterior probability estimates of
binary events can be found in Bernardo and Smith [16]. In our case, the binary
events are the different analysis performed by the analysis tool with Boolean
outcomes.

We choose the beta density function that takes the integer number of these
two possible outcomes represented as parameters α and β (representing the total
number of positive and negative outcomes respectively) to express the uncertain
probability that the workflow result may be trusted.

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

ba
bi

lit
y

be
ta

 d
en

si
ty

 f(
x|

1,
1)

Probability x

α=1, β=1

Fig. 2. Uniform distr. α = 1, β = 1

0.0

1.0

2.0

3.0

4.0

5.0

0.0 0.2 0.4 0.6 0.8 1.0

P
ro

ba
bi

lit
y

be
ta

 d
en

si
ty

 f(
x|

5,
2)

Probability x

α=5, β=2

Fig. 3. Example distr. α = 5, β = 2

The Beta Density Function: The Beta Distribution is a continuous proba-
bility distribution with the probability density function defined on the interval
[0, 1]. Beta distribution is defined in terms of parameters α and β. A continuous
random variable has a beta distribution with parameters α and β, its density
function f(x|α, β) can be expressed as;

f(x|α, β) =
xα−1(1− x)β−1

B[α, β]
(1)

where, 0≤ x ≤1, α > 0, β > 0 and B[α, β] is the beta function with parameter
α and β which is given as;

B[α, β] =
∫ 1

0

xα−1(x− 1)β−1dx (2)

A special case in beta distribution is when α = 1 and β = 1, x is said to have
a uniform beta distribution. Thus when nothing is known, i.e., no analysis is
performed on the workflow, the distribution is uniform as seen in Fig.2. Let us
consider an analysis process of two possible outcomes {positive, negative}, let p
be the total number of observed positive outcomes and n be the total number of
observed negative outcomes. After this observation, the posterior distribution is
the beta function with α = p+1 and β = n+1. Figure 3 illustrates an example of
the beta density function f(x|α, β) with 4 positive and 1 negative outcomes. This
beta density function distribution is a way to express the uncertain probability
that a process will produce a positive outcome in the future [15]. This provides a
firm mathematical basis for combining the responses from the analysis tool and
expressing trust measures for the results of past workflows under evaluation. The
probability distribution of x is continuous, so it is only meaningful to compute
f(x|α, β) for a specific interval[0, 1]. We consider the maximum point in the
distribution of x to be the “trust probability” of the result given the amounts
of positive and negative outcomes from the analysis. In the example in Figure 2
with 4 positive and 1 negative outcomes, the “trust probability” is 0.8. This
indicates that given the number of analysis outcomes, the probability to trust
the result is 0.8. In a case with 5 positive and 0 negative outcomes, the trust
probability is approx. 1, representing complete trust in the result.

4 Analyzing Workflow to Elicit Trust

As stated previously in section 3, the assessment of the amount of trust for
a particular result is obtained by processing the decision tree. In [15], these
questions were manually answered by a user. In this section, we describe the
underlying mechanism used to automate this process.

4.1 Analysis Tool

Our analysis tool makes uses of the Java Expert System Shell (JESS), a java rule
engine. JESS uses an enhanced version of the Rete algorithm to process rules.
Rete is an efficient mechanism for solving the difficult many-to-many matching
problem (see for example [17]). The Rete algorithm expects two different types
of input, (1) a set of rules which represent the logic of the computation (also
called production rules) and (2) a set of facts which represent the data to be
analysed (also called working memory).

The data produced by the execution of a provenance-aware workflow is com-
posed of a set of p-assertions. Such a set of p-assertions provide the description
of the workflow that has actually been enacted (an instance of an abstract work-
flow description). A p-assertion can be used to record one of the following events:
an interaction between two actors, the state of an actor at a particular moment
or a relation between two events.The analysis tool can also be used to detect
possible conflicts in the p-assertions recorded. The nature of detected conflicts
is large and various, from detecting a difference between the data submitted
by the sender and by the receiver of a given interaction, to the detection of an
unexpected behaviour during the execution of a workflow.

In the current implementation, p-assertions are provided under an XML for-
mat, defined by a particular schema referred as a PStructure [18]. A p-assertion
is composed of two kinds of data: the first describes provenance-specific data
such as client (requester) and service (provider) actors, unique identifier for the
p-assertion and the second represents application-specific data. This application-
specific data is also encoding in an XML format but defined by external, appli-
cation specific, schemas. Therefore, the analysis tool has to manipulate data
in which a part of the structure (and the meaning) is known (the provenance-
specific part) and another part which could vary according to the particular
application being considered.

Our analysis tool avoids the need for a dedicated XML parser, and is able to
import any kind of XML content. It is also, subsequently, able to perform some
reasoning on this data. The architecture of the analysis tool, shown in Figure 4,
makes use of three components: the XML Loaded, the Facts Transformer and
the Facts Processor.

Data

Facts
Transformer

XML Loader Facts
Processor

facts facts
ResultTransformation

rules

Reasoning
rules

XML
Rule Engine

step 1 step 2 step3

Fig. 4. Architecture of the analysis tool

The processing of data is composed of three successive steps involving the
three components introduced previously:

– Step 1 - Populating the Rule Engine: the XML loader is in charge of convert-
ing the XML into a set of generic facts. We have defined two generic templates
to map the XML structure into a set of facts. The first, called Element, repre-
sents an XML element. The second, called Attribute, represents an attribute
associated with a particular XML element. Each element of the XML document
is loaded into the memory of the rule engine as a fact called Element. Each
Element is identified by a unique identifier ElementID. An Attribute shares
the same ElementID that the Element belongs to. The relation(s) between

elements (eg: parent, sibling, sub-element) are enforced by inserting in each
Element the list of its parent, children and attributes, if any. Based only
on these two templates, any XML document can be transformed into a set of
facts and loaded into the rule engine memory.

– Step 2 - Converting Generic Facts into User-Defined Data Structure: Once,
the data is loaded in the memory, the facts could be used directly, however it
is possible that all the data is not relevant for a particular query, or that the
data must be reformatted prior to use with external decision rules. The Facts
transformer converts the generic facts into enhanced facts. This conversion
is achieved by introducing a set of transformation rules, whose goal is to
transform these generic facts into a meaningful format. Although this step
could be optional, it allows formatting of the raw data into structured data,
to enable the writing of reasoning rules.

These transformation rules are expressed in the language used by the rule
engine. In our case, these rules are encoded using the CLIPS syntax. It allows
a high level of flexibility in the transformation process and in the definition of
the final structure of the data. Each time that a new schema is encountered,
end users only have to create or update some of the transformation rules to
create schema-specific enhanced facts. Transformation rules can also be used
to trigger additional rules when a given condition is detected.

– Step 3 - Facts Processing : the Facts Processor modifies the enhanced facts
with a set of decision rules.

Example The example shown in Figure 5 presents the processing of a frag-
ment of a Web Service Level Agreement (WSLA) document (1). This part of
a WSLA describes the parties involved in a contract: two companies, the provider
”ProviderA” and the client ”Xinc”. The equivalent document once loaded as
generic facts is shown as (2). It is possible to recreate the XML document from
this set of facts.

One transformation rule is shown as (3). This rule creates a new “enhanced”
fact representing the contract between these two companies. It also shows that
the newly created fact (4) can be extended with additional information that was
not within the initial document. In this example, we have assumed that each
contract is identified by an internal unique identifier, so when a new contract
is loaded into the rule engine memory, the transformation rule generates a new
identifier and associates it with the fact representing the contract. The rule also
calls the RecursiveRemove function, one of the helper functions provided with
the analysis tool. This function recursively removes the fact passed as parameter
and its children.

A decision rule (5) is launched, this rule checks if a contract exists between the
company ”ProviderA” as provider and the company ”Xinc” as client. Finally,
the result (6) of the computation, here a Boolean value, is returned.

<SLA>
 <Parties>
 <ServiceProvider name="ACMEProvider"/>
 <ServiceConsumer name="XInc"/>
</Parties>
</SLA>

f−1 (MAIN::Attribute (ElementID 4) (NameSpace nil) (Prefix nil)
 (AttributeName "name") (Text "ACMEProvider"))
f−2 (MAIN::Element (ElementID 4) (LocalName "ServiceProvider")
 (Prefix nil) (ParentID 3) (Text "") (ListOfChildrenFact)
 (FactList nil) (NameSpace nil) (ListOfAttributeFact 4))
f−3 (MAIN::Attribute (ElementID 5) (NameSpace nil) (Prefix nil)
 (AttributeName "name") (Text "XInc"))
f−4 (MAIN::Element (ElementID 5) (LocalName "ServiceConsumer")
 (Prefix nil) (ParentID 3) (Text "") (ListOfChildrenFact)
 (FactList nil) (NameSpace nil) (ListOfAttributeFact 5))
f−5 (MAIN::Element (ElementID 3) (LocalName "Parties") (Prefix nil)
 (ParentID 2) (Text nil) (ListOfChildrenFact 4 5)
 (FactList nil) (NameSpace nil) (ListOfAttributeFact))
f−6 (MAIN::Element (ElementID 2) (LocalName "SLA") (Prefix nil)
 (ParentID 1) (Text nil) (ListOfChildrenFact 3)
 (FactList nil) (NameSpace nil) (ListOfAttributeFact))

(defrule newContract
 "create contract structure"
 ?contract <− (Element (TagName "SLA")
 (ElementID ?contractEID))
 (Element (TagName "Parties") (ParentID ?contractEID)
 (ElementID ?partiesEID))
 (TagName "ServiceConsumer") (ElementID ?clientEID)
 (ParentID ?partiesEID))
 (Attribute (ElementID ?clientEID)
 (AttributeName "name") (Text ?clientName))
 (Element (TagName "ServiceProvider")
 (ElementID ?providerEID) (ParentID ?partiesEID))
 (Attribute (ElementID ?providerEID)
 (Text ?providerName) (AttributeName "name"))
 =>
 (assert (Contract
 (ClientName ?clientName)
 (ProviderName ?providerName)))
 (RecursiveDelete ?contract)) f−7 (Contract (ClientName "XInc") (ProviderName "ACMEProvider")

 (ContractID 2322645))

(defrule contractBetweenXincAndACMEProvider
 "is there a contract between Xinc and ACME ?"
 (Contract (ClientName "Xinc")
 (ProviderName "ACMEProvider"))
=>
 (bind ?*result* = TRUE))

Rule engineUser input

Step 1 − Converting XML into generic facts

Step 2
Applying Transformation rules

Step 3 − Processing

TRUE

TRUE

(1) (2)

(3)

(4)

(5)

(6)

Fig. 5. Example

5 Evaluation and Results

5.1 Bioclimatic Modelling

Fig. 6. Bioclimatic Modelling in BDW

Our workflow representing the bioclimatic modelling of species distribution is
from the BioDiversityWorld(BDW) project [19]. In Figure 6, given a set of
locality data for a species, a climate preference profile is produced by referring to
present day climate data to produce a ‘climate envelope’. This is then used with
a specific selected Open Modeller (OM) algorithm by interpolating the climatic
data at the points of locality of specimens producing a bioclimatic model. Use of
bioclimatic modelling will allow the prediction of how species will be distributed
under changing climate. Such distributions projected upon a world map allows a
scientist (or policy maker) to examine where a conservation priority area should
be in the future for that species. It is possible to have various case that leads to
the evaluation of the projected world map produced by the given workflow [15].

5.2 Evaluation

We present an evaluation of our trust framework using the decision tree in the
context of the BDW workflow scenario. Three sets of p-assertions that describes
an enacted workflow consisting of two services of the BDW scenario; (1) run
OM Algorithm as a GUI service that has the algorithm and the species locality
data; and (2) get Climate Layer service gets the climate data. One of the set
was produced with services functioning correctly. Out of the other two sets, for
one set (p-assertions) were produced with a dummy Get Climate Layer service
that interpreted data incorrectly. The last set was produced by services whose

p-assertions were inadequate (i.e. not providing enough data to answer user
queries). These two sets led to some conflicts with existing p-assertions, gener-
ating scenarios for evaluation. The queried three sets of p-assertions data are
passed individually though the decision tree nodes for analysis (figure 8 provides
a part of the decision tree for illustration). Trust values are calculated using the
algorithm of eq.1 at different nodes for the paths followed in the decision tree
(see figure 7). Explaining each analysis node implemented is beyond the scope
of this paper. The following describes and illustrates some analysis performed
and the results of processing the three sets of p-assertions data that generated
three paths plotted in figure 7.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 4 6 8 10 12 14 16 18 20

T
ru

st
 P

ro
ba

bi
lit

y

No of Nodes

path 1
path 2
path 3

Fig. 7. Trust values for 3 path scenario Fig. 8. Decision Tree

Path 1 : Traversing the first set of p-assertions reaches node 6 (figure 7). This
indicates that the analysis performed to check the presence of adequate interac-
tion information is not enough to identify the workflow that was enacted. For
example, the negative result at node 4 reveals the lack of relevant relationship
information between events that occurred during the workflow enactment. The
trust value calculated at this point is 0.33.
Path 2 : Traversing the second set of p-assertions reaches node 16 (path 2 in
figure 7). Until node 13 it indicates that all the necessary information is present in
this set of p-assertions to recreate the physical workflow, trust values are at their
highest. At this node conflicts in the data passed during an interaction between
a sender and a receiver is detected, thus a negative path to node 14 is taken. At
node 14 the evaluator inputs his requirement for the parameter “precipitation”.
This parameter is not detected in the p-assertions, thus the analysis ends at
node 16 giving 0.66 as the trust value for the result. Effect of these two analysis
can be seen in figure 7. Line of path 2 is pictured falling towards the right-hand
– showing how trust value reduces with increased negative outcomes.
Path 3 : The third analysis onp-assertions ends at node 18, giving a trust value
of 0.83 (path 3 in figure 7). Although no conflict in the data was found (at node
13), the parameter requirement (same as in the previous case) at node 15 is not

detected in this p-assertions set. This results in an end of the analysis at node
18.

In path 3 the trust value of 0.83 signifies that it is reduced due to the require-
ment specified by the user. Thus, another user evaluating the same provenance
of the workflow without any parameter requirements would have a trust value
of 0.99 (node 19 in figure 8). It can therefore be concluded that the trust model
indicates that a value of 0.99 produced by following the decision tree indicates
a complete trust within the result. Any value below this indicates a possible
abnormality in the workflow under evaluation.

6 Conclusion

This paper demonstrates that provenance information captured from a workflow
enactment engine could be used for determining the “trustworthiness” of the
result generated from such enactment. An analysis tool based on the JESS rule
engine has been presented, that may be used to perform subsequent analysis on
such provenance information—aiming to automatically calculate trust measures
for workflow result. Probabilistic trust measures are calculated using a decision
process making use of JESS rules, implemented within an analysis tool. Using
this approach, a autonomic workflow enactment engine is able to chose the most
trustworthy service. The analysis tool is used to automate the trust assessment
process.

References

1. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical Report, Electronics and Computer
Science, University of Southampton (2006)

2. BioDiversityWorld (BDW) Project, http://www.bdworld.org (2005)
3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for

reputation management in p2p networks. In: Proceedings of the Twelfth Interna-
tional World Wide Web Conference. (2003)

4. Sabater, J., C.Sierra: Regret: a reputation model for gregarious societies. In:
Proceedings of the 1st International Joint Conference on Autonomous Agents and
Multi-Agents Systems. (2002)

5. Maximilien, E.M., Singh, M.P.: Toward autonomic web services trust and selection.
In: Proceedings of 2nd International Conference on Service Oriented Computing
(ICSOC 2004). (2004)

6. Yu, B., Singh, M.P.: A social mechanism of reputation management in electronic
communities. In: Proceedings of the Second International Conference on Trust
Management(iTrust’04). (2004)

7. Witkowski, M., Aritikis, A., Pitt, J.: Experiments in building experiential trust in
a society of objective-trust based agents. Trust in Cyber-societies (2001) 111–132

8. Abdul-Rahman, A., Hailes, S.: Using recommendations for managing trust in
distributed systems. In: Proceedings IEEE Malaysia International Conference on
Communication. (1997)

9. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bringing order to the web. Stanford Digital Library Technologies Project (1998)

10. Falcone, R., Castelfranch, C.: Social trust: A cognitive approach. Trust and De-
ception in Virtual Societies Journal (2001) 55–90

11. Shaikh Ali, A., Rana, O.F., Al-Ali, R.J.: Evidence-aware Trust Model for Dynamic
Services. In: High Performance Computing: Paradigms and Infrastructure. (2005)

12. Yang, S.J.H., Hsieh, J.S.F., Lan, B.C.W., Chung, J.Y.: Composition and evalu-
ation of trustworthy web services. In: BSN ’05: Proceedings of the IEEE EEE05
international workshop on Business services networks, Piscataway, NJ, USA, IEEE
Press (2005) 5–5

13. Liu, W.: Trustworthy service selection and composition - reducing the entropy of
service-oriented web. In: 3rd IEEE International Conference on Industrial Infor-
matics (INDIN). (2005)

14. Milanovic, N., Malek, M.: Architectural support for automatic service composition.
In: IEEE International Conference on Services Computing (SCC05). (2005)

15. Rajbhandari, S., Wootten, I., Rana, O.: Evaluating provenance-based trust for sci-
entific workflows. In: Sixth IEEE International Symposium on Cluster Compution
and the Grid(CCGrid06), Singapore (2006) 365–372

16. Bernardo, J.M., Smith, A.F. In: Bayes Theorem. John Wiley & Sons, West Sussex,
England (May 2000) 116–117

17. C. L. Forgy: Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern
Match Problem. Artificial Intelligence 19 (1982) 17–37

18. Grid Provenance Project, http://gridprovenance.org (2005)
19. Jones, A., White, R., Pittas, N., Gray, W., Sutton, T., Xu, X., Bromley, O., Caith-

ness, N., Bisby, F., Fiddian, N., Scoble, M., Culham, A., P.Williams: Biodiversi-
tyWorld: An architecture for an extensible virtual laboratory for analysing biodi-
versity patterns. In: UK e-Science All Hands Meeting, EPSRC, Nottingham, UK
(2003) 759–765

