PROVENANCE

Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

[image: image41.wmf]
An Investigation on the Performance of Storing the Process Documentation in a Relational Database
-Summer Project Report-

Author: Andrej Kazakov
Type: Internal
Version: 1.0

Version: September 17, 2006

Status: Confidential

Contents

31
Introduction

32
Testing Bare Backends

32.1
Introduction

32.2
Test

32.3
Recording

82.4
Retrieval

82.5
Observations

93
Testing the Backends with the Dispatcher

93.1
Introduction

93.2
Recording

133.3
Retrieval

133.4
Observations

144
Testing bare Index

144.1
Introduction

144.2
Find a PAssertion

174.3
Find a single View or a list of Views

194.4
Find an InteractionRecord

204.5
Observations

215
Benchmarking A Provenance Store Webservice.

215.1
Test

215.2
Recording

225.2.1
ActorStatePAssertion

235.2.2
InteractionPAssertion

245.2.3
RelationshipPAssertion

255.2.4
ExposedInteractionMetadata

265.2.5
Submission Finished

275.2.6
Query

285.3
Observations

285.4
Conclusion

296
Conclusion

296.1.1
InnoDB and MySQL

296.1.2
MySQL and Berkeley

296.1.3
Recommendations

Note: All usual backend configurations have been used where possible.

MySQLStore supports InnoDB and MyISAM tables in the MySQL database.

BerkeleyDBJEStorage2 supports ensuring that the data is to disk or only to OS buffers.
1 Introduction

According to the EU Provenance methodology the Provenance of data is passed recorded to a Provenance store as an XML document. PReServ is a servlet implementation of a ProvenanceStore. At the moment there are it supports 2 backends: a Java based BerkeleyDBJEStorage2 and MySQL based MySQLStore.

The purpose of this investigation is to compare the 2 backends.
2 Testing Bare Backends

2.1 Introduction

The simplest operations that a backend can perform are: record a message and retrieve the largest independent chunk of data – an InteractionRecord according to its position in the store. This section of tests is meant to measure the efficiency of these basic operations directly on the backend without involving any addition software.
2.2 Test

During each iteration an InteractionRecord is recorded. It has 2 Views. Each of them has 10 PAssertions of each type, and 10 ExposedInteractionMetadata, and 1 SubmissionFinished message. Each Asserter is unique throughout the store.

Therefore in a single iteration 81 messages are recorded. There were 100 iterations. That sums up to a total of 8100. Each RelationshipPAssertion contains 10 objects. Each ExposedInteractionMetadata contains 10 metadata elements.
After recording each of the InteractionRecords a single interactionRecord is retrieved using xquery: $ps:pstruct/ps:interactionRecord[0]
2.3 Recording

Note: An InteractionRecord consists of 2 Views, which are recorded one after the other therefore for each global iteration there are 2 local iterations for recording PAssertions.

Note: Each local iteration contains 10 PAssertions of each type.

[image: image1.emf]Recording ActorStatePAssertions Straight to Store

0

100

200

300

400

500

600

700

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	153.79.

	MyISAM average:
	22.87.

	Berkeley to OS buffers average:
	2.66.

	InnoDB average:
	313.00.

[image: image2.emf]Recording InteractionPAssertions Straight to Store

0

100

200

300

400

500

600

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	176.19.

	MyISAM average:
	24.31.

	Berkeley to OS buffers average:
	4.21.

	InnoDB average:
	369.64.

Note: Each RelationshipPAssertion has 10 objects, which are either random – the references do not exist in this store or they point to PAssertions within the same InteractionRecord.

[image: image3.emf]Recording RelationshipPAssertions Straight to Store (Full)

0

500

1000

1500

2000

2500

3000

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image4.emf]Recording RelationshipPAssertions Straight to Store (Best)

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

	Berkeley to disk average:
	179.78.

	MyISAM average:
	182.51.

	Berkeley to OS buffers average:
	24.32.

	InnoDB average:
	1976.04.

Note: In the MySQL Backend the objects of the RelationshipPAssertion are stored separately. And while storing they are getting linked with the real PAssertion, where the GlobalPAssertionKey points to. If it is not present in the store, an empty entry is created, which will be used once the data gets recorded to the store. Therefore both the separation and the linking slow down the recording considerably in InnoDB – it has an expensive routine for key generation.
Note: Each ExposedInteractionMetadata has 10 metadata children.

[image: image5.emf]Recording ExposedInteractionMetadata Straight to Store (Full)

0

500

1000

1500

2000

2500

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image6.emf]Recording ExposedInteractionMetadata Straight to Store (Best)

0

50

100

150

200

250

300

350

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

	Berkeley to disk average:
	157.43.

	MyISAM average:
	44.92.

	Berkeley to OS buffers average:
	6.07.

	InnoDB average:
	1648.66.

Note: As well as RelationshipPAssertions ExposedInteractionMetadata is a complex structure and each child of it is stored separately. Therefore the overhead of expensive key generation in InnoDB creates a major decrease in recording times.
[image: image7.emf]Recording SubmissionFinished Message Straight to Store (Full)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image8.emf]Recording SubmissionFinished Message Straight to Store

(Best)

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

Berkeley to OS buffers

	Berkeley to disk average:
	14.81.

	MyISAM average:
	1.48.

	Berkeley to OS buffers average:
	0.24.

	InnoDB average:
	15.39.

2.4 Retrieval

[image: image9.emf]Retrieving a single InteractionRecord Straight from the Store

0

100

200

300

400

500

600

0 20 40 60 80 100

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	33.24.

	MyISAM average:
	236.39.

	Berkeley to OS buffers average:
	35.57.

	InnoDB average:
	241.14.

2.5 Observations
1. There is a major slow drop of performance for InnoDB, when a complex structure like ExposedInteractionMetadata or RelationshipPAssertion is recorded

2. For recording Berkeley to OS buffers is generally slightly faster than MyISAM. Berkley to disk is far behind and InnoDB is not comparable.
a. Poor performance of InnoDB engine is determined by the mechanism for storing keys – it involves a lot of redundancy.

3. Retrieval is fast for both Berkeley options and slow for both MySQL options.

a. Although every effort was made to make this operation fast for MySQL engines it is still slower than Berkeley. But additional performance overhead should be taken into account for MySQL as it supports multiple views. It was optimised for custom queries.
3 Testing the Backends with the Dispatcher

3.1 Introduction

PReServ uses a Dispatcher class to handle all requests (recording a message, performing a query) from the clients. For efficiency reasons when a message is recorded it is not passed to the backend straight away. But first it is recorded to the Cache as a string and a successful response is sent to the client. A background thread processes the Cache all the time, taking messages out and recording them to the store for permanent storage.
An equivalent to the Testing Bare Backends test was performed using the Dispatcher.
Note: Each retrieval iteration is preceded by 2 recording iterations because an InteractionRecord has 2 Views and they are recorded sequentially.

3.2 Recording

[image: image10.emf]Recording ActorStatePAssertions using the Dispatcher

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	430.56.

	MyISAM average:
	19.29.

	Berkeley to OS buffers average:
	17.63.

	InnoDB average:
	333.92.

[image: image11.emf]Recording InteractionPAssertions using the Dispatcher

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	417.25.

	MyISAM average:
	18.47.

	Berkeley to OS buffers average:
	16.77.

	InnoDB average:
	338.8.

[image: image12.emf]Recording RelationshipPAssertions using the Dispatcher

0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	438.63.

	MyISAM average:
	42.43.

	Berkeley to OS buffers average:
	43.73.

	InnoDB average:
	334.33.

[image: image13.emf]Recording ExposedInteractionMetadata using the Dispatcher

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	426.95.

	MyISAM average:
	19.8.

	Berkeley to OS buffers average:
	19.8.

	InnoDB average:
	324.21.

[image: image14.emf]Recording SubmissionFinished message using the Dispatcher

(Full)

0

20

40

60

80

100

120

140

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image15.emf]Recording SubmissionFinished message using the Dispatcher

(Best)

0

5

10

15

20

25

30

35

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

Berkeley to OS buffers

	Berkeley to disk average:
	42.51.

	MyISAM average:
	2.11.

	Berkeley to OS buffers average:
	1.65.

	InnoDB average:
	31.97.

3.3 Retrieval

Note: An XQuery was used that returned only the first InteractionRecord it had encountered.

[image: image16.emf]Performing XQuery

0

5000

10000

15000

20000

25000

30000

35000

40000

0 20 40 60 80 100

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

	Berkeley to disk average:
	2156.41.

	MyISAM average:
	13944.36.

	Berkeley to OS buffers average:
	1851.94.

	InnoDB average:
	19485.02.

The XQuery engine uses the atomic retrieval tested in the ‘Testing Bare Backends’ to get the contents of the whole store and then returns the needed parts of the Document depending on the conditions. Therefore even if a single InteractionRecord is required the query mechanism will still go through the whole store.

3.4 Observations

1. Times for Recording through the Dispatcher are the same for Berkeley to OS buffers and MyISAM as it does not involve any processing and is plain data insertion.

2. The XQuery implementation gets all the contents of the store back first, so the graph is linear. As Testing Bare Backends show MySQL is slower at retrieval, which is used by the XQuery processor and therefore the overhead builds up.

4 Testing bare Index

4.1 Introduction

Index is an interface that is used by the implementation of the PQuery. It represents the implementation of the simplest custom queries.
All PAssertions, Views and InteractionRecords recorded during the Testing Bare Backends were queried shortly after their recording.
Berkeley implementation of the Index interface threw an Exception whenever anything was queried and therefore a class called DefaultIndex was used for Berkeley stores. DefaultIndex implements the Index Interface basing itself on a store that can do the simple retrieval from the Testing Bare Backends. This means that DefaultIndex is very inefficient as it does not use any of the database functionality or keys, but instead just goes through the store one InteractionRecord at a time and searches for a specific item.
Note: As before only getting an InteractionRecord is a single operation per global iteration – all others are doubled.

Note: ExposedInteractionMetadata does not have a localPAssertionID, so it cannot be identified and therefore searched for through the Index Interface.
4.2 Find a PAssertion

The time shown here is the total time of querying all PAssertions of this type in a single View from a specific backend.

[image: image17.emf]Index. Find ActorStatePAssertion (Full)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

Note: Both Berkeley backends behave the same and MySQL backends are not visible as they are too close to the OX axis.
[image: image18.emf]Index. Find ActorStatePAssertion (Best)

0

20

40

60

80

100

120

140

160

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	16216.42

	MyISAM average:
	15.17

	Berkeley to OS buffers average:
	16206.12

	InnoDB average:
	11.75

[image: image19.emf]Index. Find InterationPAssertion (Full)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image20.emf]Index. Find InterationPAssertion (Best)

0

5

10

15

20

25

30

35

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	16208.51

	MyISAM average:
	14.21

	Berkeley to OS buffers average:
	16192.01

	InnoDB average:
	10.43

[image: image21.emf]Index. Find RelationshipPAssertion (Full)

0

5000

10000

15000

20000

25000

30000

35000

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image22.emf]Index. Find RelationshipPAssertion (Best)

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	16207.74

	MyISAM average:
	73.31

	Berkeley to OS buffers average:
	16192.13

	InnoDB average:
	71.63

4.3 Find a single View or a list of Views
Because of the support for multiple Views there is a question as to what View you actually want to see. Therefore if you supply an Asserter with an InteractionKey and a ViewKind you will get a single View that matches the criiteria.

Whereas if you do not supply the Asserter – you are trying to find all Views of a specific ViewKind in an InteractionRecord. That is you are searching for a list of Views.
[image: image23.emf]Index. Find Single View (Full)

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image24.emf]Index. Find Single View (Best)

0

50

100

150

200

250

300

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	1611.88

	MyISAM average:
	120.4

	Berkeley to OS buffers average:
	1613.21

	InnoDB average:
	128.9

[image: image25.emf]Index. Find Multiple Views (Full)

0

500

1000

1500

2000

2500

3000

3500

0 50 100 150 200

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image26.emf]Index. Find Multiple Views (Full)

0

50

100

150

200

250

300

0 50 100 150 200

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	1614.45

	MyISAM average:
	120.32

	Berkeley to OS buffers average:
	1612.03

	InnoDB average:
	117.1

4.4 Find an InteractionRecord

[image: image27.emf]Index. Find InteractionRecord (Full)

0

500

1000

1500

2000

2500

3000

3500

0 20 40 60 80 100

Iterations

Time taken (ms)

Berkeley to disk

MyISAM

Berkeley to OS buffers

InnoDB

[image: image28.emf]Index. Find InteractionRecord (Best)

0

50

100

150

200

250

300

350

400

450

0 20 40 60 80 100

Iterations

Time taken (ms)

MyISAM

InnoDB

	Berkeley to disk average:
	1616.27

	MyISAM average:
	244.63

	Berkeley to OS buffers average:
	1619.06

	InnoDB average:
	249.4

4.5 Observations
1. As Expected Berkeley backends behave very similar – because the difference is in recording.
2. InnoDB performs better at finding small and simple items like PAssertions, and is very close at all other queries to MyISAM. This is the place, where the slow key generation pays off at last for InnoDB – it is optimised for searching.

3. DefaultIndex has a linear searching time because it goes through all of the store while trying to get a specific item.

5 Benchmarking A Provenance Store Webservice.
Note: Using default configuration of MySQLStore (MyISAM engine) and BerkeleyDBJEStorage2 (to disk)
Note: ClientLib was used as a client library. All times are measured on the client. On the server ProvenanceService is used by both stores

5.1 Test

During each iteration an InteractionRecord is recorded. It has 2 Views. Each of them has 10 PAssertions of each type, and 10 ExposedInteractionMetadata, and 1 SubmissionFinished message. Each Asserter is unique throughout the store.

Therefore in a single iteration a total of 80 PAssertions is recorded. There were 30 iterations. That sums up to a total of 2400.
After recording each of the InteractionRecords the whole contents of the store is retrieved using xquery.

5.2 Recording

Note: An InteractionRecord consists of 2 Views, which are recorded one after the other therefore for each global iteration there are 2 local iterations for recording PAssertions.

Note: Each local iteration contains 10 PAssertions of each type.

To clear the reasons of poor performance equivalent tests were done on the server machine, acting as both server and client (local), to eliminate network overhead, and through the network where a powerful additional machine acted as a client and the server stayed the same.

5.2.1 ActorStatePAssertion

[image: image29.emf]Local Recording ActorStatePAssertions

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	648.65.

	MySQL average:
	102.36.

[image: image30.emf]Remote Recording ActorStatePAssertions

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	637.82.

	MySQL average:
	72.4.

5.2.2 InteractionPAssertion

[image: image31.emf]Local Recording InteractionPAssertions

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	671.68.

	MySQL average:
	190.13.

[image: image32.emf]Remote Recording InteractionPAssertions

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	776.48.

	MySQL average:
	137.73.

5.2.3 RelationshipPAssertion
[image: image33.emf]Local Recording RelationshipPAssertions

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	721.98.

	MySQL average:
	186.56.

[image: image34.emf]Remote Recording RelationshipPAssertions

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	713.03.

	MySQL average:
	128.1.

5.2.4 ExposedInteractionMetadata

[image: image35.emf]Local Recording ExposedInteractionMetadata

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	631.25.

	MySQL average:
	120.48.

[image: image36.emf]Remote Recording ExposedInteractionMetadata

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	632.51.

	MySQL average:
	85.46.

5.2.5 Submission Finished
Note: There is only one SubmissionFinished message per View and it contains the number of PAssertions that are expected to be recorded. Therefore there is only one message for each local iteration.
[image: image37.emf]Local Recording Submission Finished message

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	54.91.

	MySQL average:
	9.53.

[image: image38.emf]Remote Recording SubmissionFinished Message

0

50

100

150

200

250

0 10 20 30 40 50 60

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	57.56.

	MySQL average:
	4.71.

5.2.6 Query

[image: image39.emf]Local Full PStucture XQuery

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	29518.1.

	MySQL average:
	116968.2.

[image: image40.emf]Remote Full PStucture XQuery

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 5 10 15 20 25 30

Iterations

Time taken (ms)

Berkeley

MySQL

	Berkeley average:
	23502.26.

	MySQL average:
	73996.3.

5.3 Observations

1. The overall performance of this particular machine was quite poor at all stages.

2. MySQL is faster at recording. During the recording a response is sent to the client after the message has been saved to a cache. And MySQL implementation of cache is slightly faster than Berkeley implementation.

3. Getting the whole store back is linear because the contents of the store grows. However Berkeley seems to be faster at it because it is faster at retrieving InteractionRecords in general. There are several reasons for that:

a. MySQL implements a more complex storage policy – multiple sender/receiver Views.

b. MySQL supports Inferred Views, which are multiple by definition.

c. Berkeley is optimised for the Retrieval operation (getting an InteractionRecord at a time), while MySQL database model was built to supply the necessary separation for custom queries.

4. Network overhead can be neglected as insufficient in the remote tests.

5. Separating the client from the server always improves performance for MySQL backend. Berkley does not show significant difference most of the time.

6. MySQL is run on the server as a Windows service and when the client and the server are merged it obviously lacks resources whereas Berkeley is Java based and is running in the same thread as the whole servlet.
7. Memory usage by the servlet is enormous – the maximum heap size had to be extended. MySQL server requires 50MB of memory at its peak, usually 35MB, whereas the servlet runs at 200MB as a rule and at peak times jumps up to unpredictable heights.

5.4 Conclusion
The particular machine for the tests was very slow.
Running the tests locally limited the MySQL server considerably.

Recording was faster using the MySQL store, while simple retrieval of the whole contents was more efficient with Berkeley.

6 Conclusion
6.1.1 InnoDB and MySQL

InnoDB is a very advanced engine that can use raw partitions and supports various functions to keep prevent data loss in a fault situation. It has a more expensive routine for generating keys. But on a large dataset that is overweighed by the speed of searching.

MyISAM on the other hand is very lightweight, supports virtually no rollback if the data was lost. It uses files to store the data and therefore is highly dependant on the file system. It is perfect for small stores as it provides reasonable speed and safety.

6.1.2 MySQL and Berkeley

The model of the Berkeley database is optimised for fast recording and retrieval of the whole store. And if it does not ensure writing straight to disk, recording is fast, but then there is no warranty against faults.

The storage space needed by Berkeley is surpassing the needs of MySQL considerably – for an identical store with evenly spread PStructure it took 120MB for MyISAM and 678MB for Berkeley.
Later versions of Berkeley are not guaranteed to support the previous data formats therefore updating becomes an issue.

Berkeley store does not need any additional deployment procedures.

6.1.3 Recommendations

The only operation, where MyISAM cannot surpass Berkeley is simple retrieval. This operation is heavily used by the XQuery engine. Therefore only if the main purpose of the store is performing XQueries – Berkeley backend should be used.
	Copyright @ 2005, 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission's Sixth Framework Programme

1

