PROVENANCE

Enabling and Supporting Provenance in Grids for Complex Problems

Contract Number: 511085

[image: image1.png]PHeader

Interactionkey

7 b
type wsa EndpointReferenceType

sianyURD

InteractionMetabata

tacer &
type = xaranyLRL

type = psiInteractionietaDats |

or ‘Any Flement

interactionContext
siInteractionContext

type
o

A Tutorial Describing How to Link Distributed Process Documentation
Author: Steve Munroe

Type: Internal

Version: 1.0

Version: September 19, 2006

Status: Confidential

Abstract

This document describes the functionality of the pheader in linking process documentation about one interaction stored across different provenance stores. It does this by providing a way for actors to pass meta-information about interactions. Though the model is technology neutral, we focus on the use of SOAP messages as the vehicle to pass around application messages and thus form the basis of the interaction model in this document.

Linking 101
This document describes the functionality of the pheader in linking process documentation about one interaction stored across different provenance stores. It does this by providing a way for actors to pass meta-information about interactions. Though the model is technology neutral, we focus on the use of SOAP messages as the vehicle to pass around application messages and thus form the basis of the interaction model in this document.
Distributed Provenance and the PHeader

Each pheader contains an interaction key, an optional set of interaction metadata and an optional set of interaction contexts. When a pheader is sent within the header of a SOAP message, the information contained within the interaction metadata refers to the current interaction, while the information contained with the interaction contexts refers to other interactions. Figure 1 shows the model of the pheader. Top level elements include the three pieces of information just described. Each can be expanded to show their contents as shown in the figure.

[image: image8.png]

Figure 1. The Pheader model
In what follows, we will work through an example to show how provenance related linking information can be recorded. Figure 2 shows two actors about to engage in an interaction, where one is the sender and one is the receiver. There are also two provenance stores available for them to record process documentation to.

[image: image2.jpg]Sender

Receiver

Figure 2. Two actors and two provenance stores
In Figure 3, the sender sends a message to the receiver. In the message (here, taken to be a SOAP message), is a pheader (Pheader1) containing information relating to this interaction. We adopt the convention of showing the contents of messages as an indented list in an ellipse. Items that are indented are children of the leftmost item directly above. Thus in Figure 3, both the interaction key (ik1) and interaction metadata (im) are children of Pheader1, and the identity of provenance store 1 (ps1) is the child of im. The pheader passed from the sender to the receiver includes both an interaction key and interaction metadata. This information tells the receiver what the key is for this interaction (ik1) and, contained in the interaction metadata, information about the location of the provenance store to which the sender intends to record its p-assertions about this interaction (i.e. ps1).
[image: image3.jpg]Sender Receiver

Figure 3. The transfer of a Pheader

The sender now records a p-assertion to ps1 stating that it has sent a message to the receiver. This is shown in Figure 4, where the record message sent from the sender to ps1 is shown as the ellipse on the left of the figure. In the record message is the interaction key (ik1), which is used to either create a new interaction record if this is the first time p-assertions have been recorded for this interaction, or to extend an already existing interaction record if one with this interaction key already exists. Along with the interaction key, the record message also contains the sender’s view kind (i.e. senderViewKind) and an interaction p-assertion (ipa1). Now, within ipa1 is information that is useful for queriers to locate process documentation. However, this information is buried in the p-assertion and so difficult to access. To address this, we now expose certain information inside the p-assertion in a new construct we call exposed interaction metadata (exposed im). This contains a global p-assertion key identifying the p-assertion where the information in this exposed interaction metadata was obtained, and a copy of the interaction metadata found inside the interaction p-assertion, which contains the identifier of the provenance store where the interaction record for this interaction is stored (i.e. ps1 in this instance). Notice that the nesting level of the exposed interaction metadata is the same level as the p-assertion in the record message, i.e. it is not embedded within the p-assertion and thus directly accessible to queriers. It is important to note that exposed interaction metadata does not constitute a new p-assertion, since it does not provide any new documentation about an existing process. Instead it exposes, in existing p-assertions, metadata that can be of use to queriers.
[image: image4.jpg](4
senderViewKind
ipal

- pheadert
exposed im
- gpak(ipat)

Sender

Receiver

Figure 4. The record message the sender sends to the provenance store
Upon receipt of the message from the sender, the receiver performs the same operation as shown in Figure 5, i.e. it records a message to the provenance store containing the interaction key (that it just received from the sender), its view kind (here receiverViewKind), an interaction p-assertion (here identified as ipa2) and a copy of the interaction metadata contained within the p-assertion in the exposed interaction metadata structure, which also contains the global p-assertion key for ipa2.
[image: image5.jpg]Sender

Pheadert
-ik1
-im

‘pst

Receiver

(]
receiverViewKind
ipa2

- pheadert
exposed im
- gpak(ipa2)
-im

“pst

Figure 5. The record message the receiver sends to the provenance store
So far so good. However, an important piece of metadata has not yet been captured in the sender’s view of the interaction, i.e. the location where the receiving actor is storing its own p-assertions about this interaction since, in the most general case, this is not known at the time the sender records ipa1.

[image: image6.jpg]Sender

Pheader2
-ik2
-icontext

ik
“receiverViewKind,

“im
“ps2

Receiver

Figure 6. The information the receiver sends back to the sender
The receiver now has several options to get this information back to the sender. It can wait until it needs to interact with the sender and pass this information along with the message for this new interaction, it can send a message solely to convey this information, or it can pass this information using an out-of-band mechanism. The choice of which to use is left to the application. In any case, it must send this information within an interaction context (icontext). Figure 6 shows the case where the receiver is engaging in a new interaction with the sender solely for the purpose of passing back information about the provenance store it is using to record to for the interaction identified by ik1. The pheader for this interaction (Pheader2) contains a new interaction key for this interaction (ik2), and it also contains interaction context information, which refers solely to interaction ik1. In other words, although this is a new interaction (identified by ik2) its purpose is simply to provide the sender with information regarding ik1, where this information is contained within the interaction context. The interaction context contains the identifier ik1 (thus telling the sender which interaction this is about), the view that this actor has on the interaction (i.e. in this case the receiverViewKind) and interaction metadata about ik1, namely the provenance store where the receiver is storing its p-assertions about ik1 (namely, ps2).
The sender can now extract the icontext contained within the pheader and add this information to the exposed interaction metadata it has already recorded in the interaction record holding ik1. This is shown in Figure 7, where the sender now records a p-assertion (ipa3) about this new interaction (i.e. ik2) for which it records its own view (i.e. a receiverViewKind) as well as the pheader (i.e. Pheader2) within which the icontext for ik1 is located. The sender extracts this and places it within the interaction record for ik1 as an addition to the exposed interaction metadata for that interaction. So now the metadata about ik1 is complete and readily available, and this has benefits for querying.

[image: image7.jpg]- pheader2

Sender

Pheader2

* receiverViewkind
“im

ps2

Receiver

Figure 7. The sender adds to its exposed interaction metadata using the information it receives from the receiver
Querying Distributed Provenance
Assuming the above has been done, a querier can now come along, find process documentation relating to an interaction stored at ps1, and simply look up the exposed metadata stored within the interaction record for ik1 to discover where the receiver in this interaction has stored its own p-assertions for this interaction (i.e. ps2).

Conclusion
This document presents a description of the way in which process documentation relating to one interaction stored at different locations can be found by a querier. This is achieved by allowing the receiver of a message to send back information about where it is storing p-assertion about that message in a pheader. Such metadata relating to interactions is exposed within interaction records to make it simple for queriers to find this information.
	Copyright @ 2005, 2006 by the PROVENANCE consortium

The PROVENANCE project receives research funding from the European Commission's Sixth Framework Programme

